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Conformal structure in the spectrum of an altered quantum 
Ising chain 

Malte Henkel and Andras Patkos? 
Physikalisches Institut, der Universitat Bonn, Nussallee 12, 5300 Bonn 1, West Germany 

Received 30 July 1986 

Abstract. The Ising model with an infinite line of defects is mapped onto a strip with two 
defect lines. The Hamiltonian spectrum is studied at the bulk critical point. Its exact 
diagonal form is found for an infinite number of sites. The spectrum of physical excitations 
contains an infinite number of primary fields, while the leading ground-state energy 
correction is independent of the defect strength. A novel algebraic structure interpolating 
between those belonging to periodic and free boundary conditions is signalled. 

1. Introduction 

In addition to scale invariance, a statistical model at its critical point also exhibits 
conformal invariance. In two dimensions conformal invariance plays a central role in 
constructing a systematic theory of critical correlations, first recognised by Belavin er 
a1 (1984) (for a review, see Cardy 1986a). The spectrum of the transfer matrix (or the 
Hamilton operator in the 7-continuum limit) is then classified into the irreducible 
representations of the Virasoro algebra, characterised by the highest-weight (primary) 
fields. Von Gehlen and Rittenberg showed, using finite-size scaling of the spectra of 
finite-width strips, how to identify the primary fields for specific models like the Z3 
Potts model (von Gehlen and Rittenberg 1986a, Rittenberg 1986) or the Ashkin-Teller 
model (von Gehlen and Rittenberg 1986b, 1987). Recently the investigation of the 
universality features of higher-order finite-size corrections was started, exploiting the 
knowledge of n-point correlation functions (Reinicke 1986). 

The Ising model is known to be the simplest example of a conformally invariant 
field theory at its critical points (Belavin et a1 1984). A detailed finite-size scaling 
study of its conformal properties based on the exactly known spectrum was done 
recently by Henkel (1987). 

In this work, we shall study the influence of a defect line on the Ising model. 
Across this line the value of the coupling is KJ, whereas for the rest of the lattice in 
the critical point its value is J,. K = 1 means no defect, while for K = 0 a free surface 
is introduced into the system. Following Turban (1985) the infinite lattice is mapped 
onto a strip with two defect lines under the assumption that conformal invariance 
holds for the defected system too (figure 1). In the case of the so-called ladder-type 
defect the defects appear in the potential part of the Hamiltonian in well defined 
positions: 

t Permanent address: Department of Atomic Physics, Eotvos University, Budapest, Hungary. 
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Although some critical exponents, x( K ) ,  vary continuously with K ,  one still can derive 
the amplitude-exponents relation for the fundamental gap of H (Turban 1985): 

A ( K )  = 2 7 T X ( K ) .  (1.2) 
This relation has been checked to great accuracy for the two lowest excited levels by 
Guimaries and Drugowich de Felicio (1986) after performing a Jordan-Wigner (1928) 
transformation on ( 1 . 1 ) .  This yields the well known fermionic representation of ( 1 . 1 )  
(see Lieb et a1 1961): 

N N-I 

H = c (C',C, -9 - 4  c (C' ,  - G ) ( C + I  + GI+,) 
n = 1  n = 1  

+ ( f - 0) ( c 'N - C N  ) ( c: + cl 
-K)[ (C'N/4 -  cN14) (ck /4+ l+  CN/4+1) 

-k ( C i N / 4 -  c3N/4)( C:N/4+l + C3N/4+1 11 (1 .3)  
where Q=O denotes the energy sector (excitations are built of an even number of 
fermionic states), while Q = 1 stands for the spin sector with an odd number of filled 
fermionic levels. 

Guimaries and Drugowich de Felicio (1986) also pointed out that the K dependence 
of the exponents comes from the marginality of the defect energy operator (see also 
Brown 1982). 

The exponents defined by the scaled gap values 

( N / 2 7 r ) G =  F ( K ) = x ( K )  (1.4) 
characterise the correlation of spins at finite distance from the straight defect line in 
the two-dimensional plane. The most systematic study of the n-point functions with 
the n points aligned on the defect line was presented by Kadanoff (1981). His results 
are extremely helpful for the identification of all independent scaling fields appearing 
in the altered Ising model. 
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Our paper presents the following results concerning the conformal properties of 

(i) We find, in the N + 00 limit, the exact diagonal form of equation (1.3) 
the Ising model in the 0 s  K S 1 interval. 

where A can take all values between 0 ( K  = 0) and f ( K  = 1). We shall show how to 
parametrise A as a function of K (see § 4). 

(ii) In the energy sector (which is generated by the identity and the energy operators) 
no K dependence is observed. The leading O( 1 / N )  correction to the ground-state 
energy stays fixed at its value computed (Affleck 1986, Blote et a1 1986) for the K = 1 
case from the value of the central charge, c = i. 

(iii) In the spin sector infinitely many exponents vary continuously with K.  While 
for K =0,  1 the spectrum consists of just two conformal towers, we find in the whole 
0 < K < 1 interval infinitely many new primary fields. Denoting the scaling dimension 
of the kth primary field by xk, we find 

(2Xk+1)i’2=2k-(2Xk)1’2. (1.6) 

This relation is shown to be a direct consequence of the diagonal form of the Hamil- 
tonian. 

(iv) The whole spectrum can be classified into towers starting with the primary 
fields of equations (1.6). The degeneracy of the secondary levels was found to follow 
from simple generating functions. 

(v) Results listed under (ii) and (iii) exactly reproduce the conclusions of the 
Euclidean analysis by Kadanoff (1981). This fact represents the complete verification 
of the correctness of Turban’s mapping, which is not a priori self-evident, since in the 
case of free boundary conditions only real analytic mappings are allowed (Cardy 1984). 

The infinite number of primary fields, the degeneracy pattern and the fixed coefficient 
in front of the 1/ N correction to the ground-state energy signal the appearance of an 
original conformal algebraic structure in the defected Ising system. 

The paper is organised as follows. In 9 2 ,  to make the presentation self-contained, 
we review the results of Kadanoff (1981) and reformulate them to be of maximal use 
for the identification of the conformal structures in the spectrum. The spectrum itself 
is analysed in the following sections. In § 3, we perform analytic perturbative calcula- 
tions around the exactly known solutions for K = 1 and 0. 

Section 4 is the heart of the paper. The spectrum of (1.3) is found numerically for 
any value of K .  In the limit N + 00, the exact diagonal form (see equation (1.5)) of 
the Hamiltonian is obtained. The primary fields and their towers are identified. 

Our conclusions are given in § 5 .  

2. Primary fields in presence of a straight-line defect 

In this section the results of Kadanoff (1981) will be described in order to make our 
discussion self-contained. We also introduce the notations of the present paper. 

Consider the composite field 
N 
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with the D,(y) variables ordered along the y axis in the plane. The index refers to 
the type of the field as follows (Kadanoff 1981) 

0 unit operator 
order parameter 
disorder parameter 

1 fermion 
-1 antifermion. 

A 'quantum number' r N  is associated with this set of operators, defined recursively 

rJ+ = r, + ( - 1 I2'1y,+ 1 r1= Y1. (2.3) 

It was shown by Kadanoff and Ceva (1971) that the expectation value of ON is different 
from zero only when r N  = o  (the 'neutrality condition'). Then at the critical point a 
Coulomb gas type expression was found: 

Clearly the anomalous dimensions of the fields are determined by their charges ql. 
In the perfect infinite system the charge of a field at site y, is simply given by 

q, = ( - 1 ) * L  ?I (2 .5 )  

yielding the following scaling dimensions for the 'elementary fields' (x = tq2):  

X 1 p  = x-1/2 = g x1 = x-1 = f .  (2.6) 

The composite fields appear in the short distance expansion of the product of two 
elementary fields possessing the following fusion rules: 

~ , ( Y + O ) D P ( Y  -O)-D,(y)  

y = (Y + (- 1)'"P 

9, = qa +(-1)2"qp. 

(2 .7)  

According to (2 .7)  n fermions (antifermions) form a composite field of charge n ( - n ) .  
The fusion of these fields with an order (disorder) variable (approaching the composite 
from the direction of smaller y values) builds up variables with half-integer charge. 

The scaling dimensions of the operators created in the short distance expansion 
are again calculated by the formula x = fy'. The integer charged fields are seen to 
belong either to the conformal tower of the unit and the energy operators (when x is 
integer) or to that of the fermionic fields (x  is half integer). The half-integer charges 
have dimensions x =Q+{[i(2n + 1)I2f-Q} which belong therefore to the order or disor- 
der towers. This means that no new primary field occurs among the composite fields 
when the system is perfect. 

Now, along the line on which the multi-point correlation functions are evaluated, 
the nearest-neighbour coupling is enhanced by a factor 2. We shall concentrate on 
the so-called ladder-type defects, where the variation of 2 between 0 and 1 interpolates 
between the perfect infinite system and two half planes with free boundary conditions. 
The conformal characterisation of both these systems is well known (Cardy 1986b). 
The interest of the present study lies in understanding the interpolating conformal 
structures. 
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The expressions (2.3), (2.4) and (2.7) remain valid under this modification in 
unchanged form. Equation (2.5) is replaced by a ‘renormalised’ expression, in which 
in place of y some function of K appears (Kadanoff 1981): 

T )  sin-’(tanh 22)  y = 4 ( 2 n + 1 )  

y = n. 
g ( y, K ) = {; + ( l’ 

The scaling dimension of the fields built up from those characterised by integer y are 
therefore unchanged. The neutrality condition r N  = 0 which reflects the actual value 
of the central charge (Dotsenko and Fateev 1984) implies a c value which is independent 
of K as well. 

The additive renormalisation of all the charges in the order (disorder) parameter 
sectors actually originates from the ‘non-renormalisation’ of the integer charges. The 
spacing of the continuously changing scaling dimensions x, = i g 2 (  y, K )  is not quantised 
any more. This fact signals the occurrence of infinitely many new primary fields in 
the system with defects. 

As the scaling dimensions of these fields were given for K = 1 as x -$= n ( n  + 1)/2 
( = 1,3,6, 10,. . .), the levels of the perfect system, in the neighbourhood of which the 
defect gives rise to new primary fields, are uniquely foreseen. 

The above observations make it explicit that the Ising model with line defects is 
by no means minimal (the number of primary fields is not finite). Still, the dimensions 
of the new primary fields are not arbitrary; they can all be parametrised with the help 
of a single one, say x,( I?), the continuously changing dimension of the disorder variable. 
(As usual, 

The non-renormalisation of the fermion charges relates x,(K) to x,(K). As the 
defect line breaks self-duality, they are no longer equal, but by equation (2.7) the 
product of an order and a disorder field gives a fermion (antifermion) as before. Then 
(2.8) and (2.7) require 

(2.9) 
a relationship first recognised by Brown (1982). For the notation of the dimensions 
of the family of new primary fields we shall use x,(n, K )  and x,(n, K )  with x,(O, K )  = 
xu(<), x,(O, K )  = x,(K). They are given as 

refers to the disorder and U to the order parameter.) 

g(4, K ) + g (  -1, K ) = ( 2 x , ( R ) ) 1 / 2 + ( 2 X , ( K ) ) 1 ’ 2 =  1 

(2x,(n, ;))‘I2 = ( ~ X ~ ( K ) ) ’ / ~ +  n = n + 1 - (~x, (K))”*  

(2x,(n, K ) ) ” ~  = ( 2 x , ( ~ ) ) ” ~ +  n. 
(2.10) 

This is nothing else than equation (1.6), where the series x, belongs to the odd and 
the series xu to the even values of k. 

The considerations based on (2.4) do not suffice, however, to ascertain whether the 
new independent fields do possess their own conformal towers. This question can be 
answered most directly by finding the spectrum of the corresponding Hamilton operator 
on a finite-width strip. The degeneracy structure of the levels provides information 
concerning the way the conformal symmetry is realised by the king model in the 
interval 0 < K < 1. 

3. Results from a perturbative analysis 

In this section we shall determine the excitation spectrum of (1.3) perturbatively. We 
find features which prove to be present for any value of K .  Therefore readers not 
interested in analytic formulae might skip this section and proceed directly to § 4. 
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The eigenvalues of (1.3) are obtained with the help of matrices appearing when 
(1.3) is reshuffled into the form 

(3.1) 

(Lieb et a1 1961). A is a symmetric and B an antisymmetric real N x N matrix. The 
eigenmodes 0, CC, and eigenvalues A are determined by the set of equations 

(3.2) 

which is equivalent to finding the eigenvalues of the symmetric matrix 

M = ( A -  B ) ( A +  B ) .  (3.3) 

The perturbative analysis of this eigenvalue problem parallels that performed by Brown 
(1982) in the Euclidean formulation for K = 1. In particular, we are able to make 
explicit the way marginal operators produce continuously moving exponents in the 
Hamiltonian formulation of the theory. 

3.1. K =  0 

In this case one separates terms proportional to K in (1.3) as perturbations to the 
system consisting of two free strips of width N/2. The perturbation couples these 
strips through nearest-neighbour couplings across the defect lines: 

[A(A - B ) ] m n  = K [ $ n , N / a + l 6 m , N / 4 +  S n , 3 ~ / 4 + 1 8 m , 3 ~ / 4 1  

= [A(A+ B ) ] L n .  (3.4) 

The physical excitations at K = O  are mere juxtapositions of the excitations of two 
independent strips. The unperturbed levels and eigenfunctions are therefore already 
computed (Lieb et a1 1961, Burkhardt and Guim 1985). 

The application of the perturbation theory to leading order in K does not lift the 
double degeneracy of the fermionic levels in the Q = 0 sector. Since the spectrum of 
a single strip is given by the representations of one Virasoro algebra, the spectrum of 
the energy sector of H (equation (1.1)) is given by the direct product of two representa- 
tions of the Virasoro algebra. In particular, the expression for the ground-state energy 
is 

(3.5) 

(see Burkhardt and Guim 1985). This implies also that the leading 0 ( 1 / N )  correction 
to the bulk energy density is given by 

E ,  = 1 - cosec n /2(  N + 1) 

which exactly coincides with the correction of one periodic chain of length N (Affleck 
1986, Blote er a1 1986). 

The perturbation (3.4) in the Q = 1 spin sector leads to the following corrected 
values of A: 

= 2 sin fa, F ( 4 ~ /  N)  cos fa, sin iN6, 

= ( 77 /  N)[2U -k 1 (- 1)" (4K/ 7 7 ) ]  + o( 1/ N 2 )  (3 .7)  
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where 

According to (3.7), the fermionic levels in the spin sector split symmetrically around 
their K = 0 positions and form two infinite towers starting with the highest weights: 

The lowest scaled gap can be calculated with the help of (3.5) and (3.7) from the formula 

where Eo( Q = 1) = - f Xu,, A+,  This expression, when expanded to O( NO), gives 

Fgap = f - 2K / (3.9) 

which by the amplitude exponent relation (1.4) agrees with the Hamiltonian expression 
of x = 77/2 (Peschel and Schotte 1984) expanded to O ( K ) .  

The general analysis of the perturbative finite-size corrections to the scaled gap 
from local operators with scaling dimension x yields an N dependence - (Cardy 
1986b, Rittenberg 1986). The leading effect of a marginal (x  = 1) perturbation is 
therefore to shift the gap amplitude by a quantity proportional to K .  The nearest- 
neighbour energy operator is just of this type. We stress that our formulae indicate 
O( 1/ N 2 )  next-to-leading finite-size corrections to the eigenvalues and no 
O( N log N)-'-type corrections seem to appear. 

3.2. K = 1 

The perturbation part of the Hamiltonian is now proportional to (1 - K )  and one uses 
in the standard perturbative calculations the periodic K = 1 wavefunctions and energy 
levels of Burkhardt and Guim (1985). 

"Iu = [ I  - (1 - K ) / N ] A ~ )  

In the Q = 0 sector the corrected levels are 

(3.10) 

where A:) stands for the unperturbed eigenvalues. The ground-state energy Eo = 
- f C, Au then receives the same multiplicative modification and is given (Burkhardt 
and Guim 1985) by 

(3.11) 
which for N + CT: yields the surface energy 2( 1 - K) /  N, but leaves the O( 1/ N)  correction 
term unaffected. This implies that the leading ground-state energy correction, governed 
at K = 1 by the central charge c = i, is unchanged. 

In the Q = 1 sector we give only the O ( K )  expressions for the lowest eigenvalue A. 
and the contribution to the zero-point energy Eo( Q = 1) = -;Xu A,(  Q = 1) which 
determine the lowest gap amplitude: 

Eo= [ 1 - (1 - ~) /N] /s in( . r r /ZN)  

A 0 = 2  (1 - K ) / N  

Eo( 0 = 1) = -[1 - (1 - K ) / N ]  cot( 7~/2h ' )  -(1- K ) / N + O ( ~ / N ' ) .  
(3.12) 

Then the scaled gap is given as 

Fgap = (N/27r)( Eo( 0 = 1 )  + A0 - Eo) = $+ (1  - K)/277 (3.13) 
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which again agrees with the Hamiltonian result of Peschel and Schotte (1984), linearised 
in 1 - K. 

Although the exponents move continuously with K, we claim at least a restricted 
universality. Following Henkel (1987) we have studied the quantum X Y  chain with 
defects : 

(3.14) 

which for y # 0 should fall into the same universality class as the defected Ising model, 
equation (1.1). From the same perturbative analysis, we indeed obtain the same 
conclusions as for the Ising model above. 

In the next section we show that the presence of two fermionic towers (equation 
(3.7)) generalises for arbitrary value of K and comprises all the information about the 
new conformal structure appearing in the interval 0 < K < 1. 

4. Fermionic representation of the scaling fields 

The numerical diagonalisation of (1.3) leads in both sectors to results of appealing 
simplicity. This simplicity allows us to guess the exact form of the diagonalised 
Hamiltonian for N + m .  As we shall show in this section, from this Hamiltonian all 
the results listed in the introduction can be derived. 

The single fermionic spectrum of the Q = 0 sector emerging from the numerical 
diagonalisation of the M matrix of equation (3.3) proves to be independent of K, i.e. 
the diagonalised Hamiltonian is of the same form as found by Lieb er a1 (1961). The 
conformal features of the energy sector d o  not differ from the K = 1 perfect Ising case. 

The results in the Q = 1 sector are best summarised by giving the diagonal form of 
the Hamiltonian for N+co 

where the two sequences of scaled ( !) eigenvalues were found to seven digits to allow 
the following parametrisation: 

(4.2) 

Here, A(K) is a smooth function of the defect strength. Its analytic functional form 
will be found from the requirement of reproducing the results of the Euclidean analysis. 
The relation (4.2) has been verified up  to r = 12 in each tower by applying the 
Bulirsch-Stoer (1964) convergence improving algorithm to the spectrum of chains 
containing up  to 210 sites. 

We proceed now to finding all primary fields. It turns out that we have infinitely 
many of them. In the spin sector all states are built from an  odd number of fermionic 
excitations. Since A ( K )  changes continuously with K and because by equation (3.20) 
At”+ At?’ = r + r ’+  1 the only candidates for primary fields are those states which arise 
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by exciting the vacuum exclusively by one set of fermionic modes. The scaled gap 
amplitudes ( F )  defined by multiplying the eigenvalues of (1.3) by N / 2 r  are given by 

where A E  is the difference in the zero-point energies of the Q = 0 and Q = 1 sectors. 
The states where some of the lower fermionic levels are empty or, in addition, pairs 
of A:') and A:*) modes are filled, will be secondaries of one of the primary fields given 
by equation (4.3). 

In order to reproduce results of the Kadanoff analysis (0 2), we require (4.3) to 
take the form 

Fb"=fqb"2=' z(2p + 1 + a ( ' ) ) 2  (4.4) 

which determines A t )  and A E  when the equidistant spacing of the single fermion 
levels is taken into account in (4.3): 

2 a " ' = 2 A t ) - 1  = ( - 1 ) ' 2 A  

A E  = t a ( I ) ' = L  2A2. (4.5) 

Comparing (4.5) with (2.10) one is led to the conclusion that the series F;' coincides 
with every second term of the series of primary fields starting with x , ( K )  ( n  = 0,2,4,  . . .) 
found in the Kadanoff analysis provided 

i - A t ) =  (2Xp(K))"2= 1 - ( 2 / r )  tan-'(l/K) 

A E  = x@(K).  (4.6) 

Then the primary dimensions FF' are identified with the n = 1,3,5, .  . . terms of the 
series starting with x,(K) in (2.10). The dimensions not appearing in the spin sector 
occur by a simple duality argument in the disorder-excitation (kink) channel. 

This means that the verification of Turban's mapping for the full spectrum is reduced 
to the check of the agreement of (4.6) with the data obtained numerically. This is 
done in table 1, where we show values of Ab'' and A E  as calculated from (4.6) for 
various values of K. In the next two columns, denoted by io and LE, we give the 
values for these quantities as determined by extrapolating (Bulirsch and  Stoer 1964) 

Table 1. Check of the conformal invariance of the defected Ising model. The quantities 
of columns two and three are calculated from equation (4.6), while those of columns four 
and five are extracted from numerical solution of (1.3). 

K A E  

1 .o 
0.9 
0.7 
0.5 
0.3 
0.1 
0.0 

0 
0.033 4754 
0.111 1997 
0.204 8327 
0.314 4528 
0.436 5489 
z 1 

1 s 
0.108 8225 
0.075 5828 
0.043 5618 
0.017 2139 
0.002 0130 
0 

I 0 8 

0.033 4754 0.108 8226 
0.111 1998 0.075 5827 
0.204 8328 0.043 5619 
0.314 4528 0.017 2139 
0.436 549 0.002 0130 
I I 0 
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5 -  

4- 

3- 
F 

2- 

1- 

the finite lattice data from chains up to 210 sites. The agreement of our data and 
equation (4.6) holds at least to six digits. 

Therefore the N + CO limit of the diagonalised Hamiltonian is parametrised analyti- 
cally by 

A ( K )  = 1 - (2/7r) tan-'( l / ~ ) .  (4.7) 

Having established that the framework of conformal invariance is fully valid in the 
altered Ising model, we now display the Hamiltonian spectrum. In figure 2 we show 
the physical states in the spin sector for several values of K up to levels p = 2 (e.g. 
equation (4.3)). The figure indicates a smooth interpolation between the two known 
extremes ( K  = 0, 1). The dotted lines stand for levels belonging to primary fields while 
the full lines are secondary levels. The degeneracy structure provides further informa- 
tion about the nature of the symmetry present in the defected system for 0 < K < l .  In 
table 2, the classification of the first 294 lowest-lying spin excitations is given into the 
p ' " s  3 and p'* '<  2 conformal towers. In the limit K + 1 these towers collapse into the 
single tower of the periodic defectless king model. 

The degeneracy d , ( N )  of each level in a specific tower follows the same pattern 

6- 3- 
3- 

L- 2 -  
2 -  

2- 1 

2 -  I 

represented by the generating function 

X 31 c d , ( n ) q "  = n (1 - q T 1  
n = l  

- 

5 -  

5- 

3- 

3- 

2 -  

2 -  

- 

- 

5 -  - 

5-  

3- 

3- 

2 -  

2 -  

- 

- 

5 -  

- 
5 -  
3- 

3- 
2- 

2 -  
- 

- 

5 -  q -  
3- 

;= 6- 

2 =  3- 

- 2-  

0 1  
0 0 2  0 4  0 6  0 8  1 0  

x 

(4.8) 

Figure 2. Low-lying spectrum in the spin sector as a function of K .  Dotted levels denote 
primary states and full lines their secondaries. The numbers give the degeneracy of each 
state. 
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Table 2. Degeneracies of the levels of the perfect ( K  = 1) and the defected chain. The 
levels at K # 1 arise from splitting of that level of the K = 1 system which appears in the 
same row. 

.Perfect Ising model Defected Ising model 
K=l O < K < l  

Primary field 
Level ( N )  d (N) expected d , ( N )  

0 1 Yes 1 
1 2 Yes 1 1  
2 3 no 2 1  
3 6 Yes 3 2 1  
4 9 no 5 3 1  
5 14 no 1 5 2  
6 22 Yes 1 1 7 3 1  
7 32 no 15 11 5 1 
8 46 no 22 15 7 2 
9 66 no 30 22 11 3 

10 93 yes 42 30 15 5 1 

This pattern occurs when states belonging to a given level of a tower are created by 
unconstrained application of some step operators 1-, (to be constructed from fields 
T , ( ~ ) ,  T , ( ~ ) )  to the highest-weight states Ii ,p(’)) .  It is to be seen how these operators 
can be related to the generators of some symmetry describing the simple spectrum 
expressed by (4.1), (4.2) and (4.7). 

5. Conclusions and prospects 

We have studied the Ising model with a straight-line defect at criticality. In the limit 
N + m ,  we found the exact spectrum of the Hamiltonian (1.3) as given by equations 
(4.1) and (4.2). This result is of great help for a detailed analysis of the spectrum. 

We have been able to verify completely the validity of conformal invariance for 
the whole spectrum. In addition to that, we have identified the infinitely many new 
primary fields which emerge if K is varied and our results agree with the Euclidean 
analysis of Kadanoff. The subleading finite-size corrections to the energy levels in 
both sectors are of the order 1/N2 and we stress the absence of logarithmic factors 
O( 1/ N log N ) )  although we have a marginal operator in our model. 

Moreover, we have established the complete degeneracy pattern for arbitrary values 
of K and found an interesting relationship of the perfect periodic Ising Hamiltonian 
to the level degeneracies, which is expressed clearly in table 2. On the other hand, 
our understanding of the defected Ising chain is not complete. A better insight should 
be gained along the following lines of research. 

( i )  It is useful to study the Ising system with a half-infinite defect line, which is 
equivalent through conformal mapping to a Hamiltonian containing a single modified 
bond. A preliminary investigation revealed a structure similar to equation (1.5). This 
hints at the presence of a unique algebraic structure in both problems. 

(ii) The exact diagonal form (1.5) of the Hamiltonian should be derived analytically. 
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(iii) The construction of the spectrum-generating algebra built up from the fields 
is in progress. 
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Note added in proof: In recent papers (Henkel and Patkos 1986, 1987) the problems (i) and ( i i i )  could be 
solved, resulting in the construction of a U( 1) Kac-Moody-Virasoro algebra with c = 1 generating the 
spectrum of the Hamiltonian with either one or two defects. 
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